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Atlas-F̀es, Morocco
‡ Groupe de Dynamique des Phases Condensées, UMR 5581 CNRS, Université Montpellier II,
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Abstract. In order to test the validity of the dynamical scaling arguments put forward by
Alexander, Courtens and Vacher in 1993 without a specific model, we previously published
results concerning percolation clusters (in 1995). In the present paper, for the first time, we
have extended calculations to the diffusion-limited cluster aggregation (DLCA) model, in three
dimensions (3D). There was excellent agreement with the theory, better than in the percolation
case. The density of states and dynamic structure factor are calculated for the very large 3D
DLCA model using the spectral moments method. The results are analysed in terms of scaling
theory and compared to experimental results concerning silica aerogels.

1. Introduction

Highly ramified fractal aggregates have recently attracted considerable interest, partly
because of their potential for describing a wide range of non-regular structures, ranging
from colloids and polymer gels to galactic structures. Jullien and Botet (1987) have
recently developed a model for diffusion-limited cluster–cluster aggregation (DLCA) which
produces random structures close to those observed in nature (Meakin 1983, Kolbet al
1983). Numerical simulations indicate that the latter structures have remarkable scaling and
universal properties (Botetet al 1983, Jullien and Botet 1987, Hasmyet al 1993, 1994).
The fractal dimension of DLCA built in three dimensions(D = 1.78) is much smaller than
the Euclidean one(d = 3). These models are basically used to obtain a better understanding
of real colloidal aerogels (Foret 1992).

Dynamical scaling has been applied to the dynamics of fractal structures. To test the
validity of such predictions, there have been many comparisons of experimental results
obtained on silica aerogels (Courtenset al 1987, 1988, Vacheret al 1988, 1990, Tsujimiet
al 1988, Reichenaueret al 1989), which were shown to be fractal, and of numerical results
mostly concerning scalar elasticity models for percolation clusters (Montagnaet al 1990,
Russet al 1991, Stoll et al 1992, Nakayama and Yakubo 1992, Nakayamaet al 1994,
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Rahmaniet al 1995). The aim of this paper is to test the validity of dynamical scaling
assumptions with respect to the 3D DLCA model.

As first pointed out by Alexander and Orbach (1982), thermal excitation spectra are
strongly influenced by the fractal structure. To describe the vibrational density of states
(DOS) g(ω) of these systems, Alexander and Orbach introduced the spectral dimensiond̃

for fracton modes:

g(ω) ≈ ωd̃−1. (1)

In homogeneous systems,d̃ corresponds to the Euclidean dimensiond.
To obtain further information on the dynamics of fractal structures, Alexander (1989)

and Alexanderet al (1993) studied the dynamic structure factorS(q, ω) of these systems
without any specific structure model. Based on the single-length-scale postulate (SLSP),
they showed thatS(q, ω) should have the following scaling form, depending only on the
single length scaleλ(ω) ≈ ω−d̃/D:

S(q, ω) = qyH(qλ(ω)) (2)

whereH is a scaling function andq = |q|.
Montagnaet al (1990) and Pillaet al (1992) calculated the dynamic structure factor

S(q, ω) by numerically diagonalizing the dynamical matrix. They obtained results for site-
percolating networks formed on 65×65 square lattices and 29×29×29 cubic lattices. Stoll
et al (1992) calculatedS(q, ω) for bond-percolating networks by a direct diagonalization
technique for a 68× 68 square lattice and a 21× 21 × 21 cubic lattice. Nakayama and
Yakubo (1992) performed numerical calculations forS(q, ω) for 500× 500 site-percolating
networks. There are some discrepancies between the different results.

Using the spectral moments method (Benoitet al 1992), we computed the dynamic
structure factor of very large percolating clusters (bond and site), in two and three
dimensions, at criticality (Rahmaniet al 1995). We confirmed previous numerical results
in agreement with the scaling behaviour theoretically predicted by Alexanderet al (1993)
in the high-frequency limit. For the low-frequency limit, we have shown that the dynamic
structure factor complies with the very nice asymptotic behaviour, in agreement with theory.
However, our results indicate a scaling behaviour with exponents that differ from those
deduced from theory.

In this paper, we present for the first time an exhaustive study on the dynamics of the
diffusion-limited cluster–cluster aggregation model. Very large aggregates of more than
105 particles were investigated. In several publications, we have shown that the moments
methods could provide the spectral density (Royeret al 1992, Rahmaniet al 1993, 1994,
Thouy et al 1995) and correlation functions (Rahmaniet al 1995) with good accuracy.
Recently, the method was applied to the simulation of Raman scattering from fractals (Viliani
et al 1995), and also to the study of sound wave and electromagnetic wave propagation in
heterogeneous systems (Benoitet al 1995).

Hence, we report results of large-scale simulations of the densities of states (DOS) and
the dynamic structure factors performed for three-dimensional diffusion-limited cluster–
cluster aggregation. Systems of different densities are studied and our estimated values for
the required scaling exponents are given.

In section 2, we describe numerical simulations of 3D DCLA system formation. In
section 3, we briefly recall scaling arguments concerning the dynamic structure factor. In
section 4, we present the results of our calculations ofg(ω) andS(q, ω). Finally, in section 5
we discuss our numerical results in the light of the scaling theory. Comparisons with results
obtained for silica aerogels are reported.
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2. The DLCA structure model

A three-dimensional DCLA lattice model was developed to simulate cases where there
is a sufficiently large particle concentration to form a gelling network at the end of the
aggregation process. We briefly review the method for constructing our system.

Initially, N identical particles of unit diameter are randomly disposed on the sites of
a cubic lattice of unit parameter, avoiding double occupancy, within a cubic box of edge
lengthL. The concentrationc is given by

c = N/L3. (3)

At a later time, one obtains a collection ofNa aggregates, theith aggregate containingni

particles, so
Na∑
i=1

ni = N. (4)

The algorithm proceeds as follows: an aggregatei is chosen at random according to a
probability pni

, which depends on the number of particlesni that it contains, given by

pni
= nα

i

/ ∑
i

nα
i . (5)

In our simulation, we usedα = −0.55, a value close to−1/D whereD = 1.78 is the fractal
dimension of the resulting three-dimensional aggregate, to make sure that the diffusion
coefficient of the aggregates would vary with the inverse of their radius.

Then a space direction is chosen at random among the six directions±x, ±y, ±z, and
an attempt is made to move the cluster rigidly by a step of one unit length in that direction.
If the cluster does not collide with any other cluster during this motion, i.e. if no particle
overlap occurs, the displacement is performed and the algorithm continues by again choosing
a cluster at random. If, instead, a collision occurs, i.e. if a particle of one cluster tends to
occupy the same position as a particle of another cluster, the displacement is not performed
and the collection of clusters is updated: the two colliding clusters are discarded and a new
cluster, formed by sticking the colliding clusters together, is added to the collection. After
that, one cluster is again chosen at random, etc. Periodic boundary conditions are used at
the edges of the box.

To illustrate the structure of our system, figure 1 shows a small simulated configuration
for a 3D DLCA model formed in a box of sizeL = 24 at concentrationc = 0.15.

The resulting configuration consists of a disordered, but homogeneous, array of fractal
aggregates connected together. It has been shown (Hasmyet al 1994) that the mean sizeξ
of these aggregates decreases as the concentrationc increases according to

ξ ∼ c−1/(3−D) (6)

whereD is the fractal dimension of the 3D DLCA of close to 1.8.
This simulation provides a good model for silica aerogels since, as revealed by small-

angle x-ray scattering (SAXS) or small-angle neutron scattering (SANS), the materials
are made up of a disordered array of connected fractal clusters resulting from primary-
particle aggregations. The colloidal aerogels, which are synthesized from a silica sol,
are made of quasimonodisperse spherical particles whose sizes can be determined directly
from micrographs. In contrast, polymeric aerogels are prepared by chemical reactions with
organosilicates. ‘Basic’ and ‘neutral’ aerogels can be distinguished according to the pH
of the hydrolysis aqueous solution. Basic aerogels are made of larger-sized, but strongly
polydispersed, primary particles, while particle sizes in neutral aerogels are smaller and
extend down to the atomic range.
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Figure 1. The configuration of the 3D DLCA aggregate built in a box of sizeL = 24 at the
concentrationc = 0.15.

3. Dynamics

Consider a 3D DLCA system consisting ofN particles with unit mass and linear springs
connecting two nearest-neighbour atoms. The equations for atomic motion are

ü +
∑

j

Kijuj = 0 (7)

with

Kii = −
∑
j 6=i

Kij

and whereui is the displacement of the atom on theith site.
The force constant is taken to beKij = 1 if the particlesi andj are nearest neighbours,

and Kij = 0 if otherwise. The displacementui has only one component. Such a simp-
lification does not affect the intrinsic nature of the dynamics of the present system. In
ordinary numerical methods, one must diagonalize the dynamical matrix in order to calculate
the eigenvaluesω2

i and their eigenvectors. This conventional method requires a large amount
of CPU time and memory as the cluster sizeN becomes large. This is unsuitable for our
problem because the cluster size of our systems must be very large to allow for fracton
modes which are localized in the low-frequency region. Using the spectral moments method,
one can determine the spectral densities, correlation functions, infrared and Raman spectra
(Poussigueet al 1991) or inelastic neutron scattering cross-sections (Poussigueet al 1994),
directly from the dynamical matrix.

3.1. Scaling arguments forS(q, ω)

The dynamic structure factorS(q, ω) is defined by

S(q, ω) =
∑

j

|aj (q)|2δ(ω − ωj) (8)
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with

aj (q) =
∑

n

q〈n|j〉eiq·rn (9)

wherern is the equilibrium position of thenth particle, andωj and〈n|j〉 are the frequency
and thenth components of the eigenvector|j〉 of the j th mode.

As noted above, Alexander (1989) and Alexanderet al (1993) have shown that the
dynamic structure factor can be expressed in terms of the scaling functionH(x) which
complies with the power-law form

H(x) ∼
{

xτ x � 1

x−τ ′
x � 1

(10)

where τ and τ ′ are scaling indices which can be determined by numerical simulations.
According to the SLSP (2), the dynamic structure factorS(q, ω) has the form

S(q, ω) ∼
{

qy+τω−τ d̃/D qλ(ω) � 1

qy−τ ′
ω−τ ′d̃/D qλ(ω) � 1

(11)

where the exponenty is given by

y = 2σ − D/d̃. (12)

σ is the averaged strain exponent which must be greater than one; indeed, a valueσ < 1
leads to a scaling breakdown (Alexanderet al 1993). ConsideringD, d̃ andσ as the basic
scaling indices, the scaling arguments applied to the dynamic structure factorS(q, ω) predict
that its behaviour is as follows (Alexanderet al 1993):

(i) in theqλ(ω) � 1 limit

S(q, ω) ∼ qγ ω−α (13)

whereγ = 4 andα = 1 − (2σ − 4)d̃/D; and
(ii) in theqλ(ω) � 1 limit

S(q, ω) ∼ Aqδ1ωβ1 + Bqδ2ωβ2 (14)

whereδ1 = 2σ − D, β1 = d̃ − 1, δ2 = −D andβ2 = 2σ d̃/D + d̃ − 1.

So, in this limit, the asymptotic behaviour ofS(q, ω) is controlled by the exponents
τ ′

1 = β1D/d̃ andτ ′
2 = β2D/d̃.

To test the theoretical predictions, many simulation experiments have been conducted on
percolating networks (Montagnaet al 1990, Pillaet al 1992, Stollet al 1992, Nakayama and
Yakubo 1992). More recently, to clarify some discrepancies between the scaling approach
predictions and numerical simulation results obtained by the different authors, we performed
calculations with the dynamic structure factorS(q, ω) (Rahmaniet al 1995). We obtained
results on very large percolating clusters (bond and site), in two and three dimensions. We
have shown that the scaling law of the length scaleλ(ω) is, as expected, in agreement with
‘the single-length-scale postulate’ of Alexander, Courtens and Vacher. For theqλ � 1 limit,
our results confirmed and supplemented the previous numerical results and are in agreement
with the scaling behaviour theoretically deduced by Alexander, Courtens and Vacher (ACV).
We obtained exponentsτ = 3.30 and 3.77 for 2D and 3D systems respectively. The values
of the exponentσ deduced for all percolating networks are in accordance with the conclusion
of ACV that σ > 1.

For theqλ � 1 limit, we have shown that the dynamic structure factor complies with
the asymptotic behaviourS(q, ω) = qyH(qλ(ω)), where the scaling function is a power
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law, x−τ ′
. The values obtained forτ ′ are about 1.20 and 1.00 for the 2D and 3D percolating

clusters (site and bond) respectively, which are consistent with the values obtained from the
data analysis of Stollet al (1992). These values do not correspond to the theoretical values
given by relations (14), but are consistent with the SLSP conjecture.

In the present paper, we extended our calculations to the DLCA model, which could
be useful for demonstrating the universality of the ACV assumptions and interpreting
experimental results concerning silica aerogels.

4. Numerical results

We performed calculations on the density of statesg(ω) and the dynamic structure factor
S(q, ω) for three samples of very large on-lattice DLCA aggregates built in anL = 100
cubic box with periodic boundary conditions. Let us denote these samples as a, b and
c, corresponding to concentrationsc = 0.05, 0.075 and 0.15 respectively; the numbers of
particles in these samples areN = 50 000, 75 000 and 150 000 respectively. The numerical
results represent means of five a samples, three b samples and two c samples.

4.1. Densities of states

The spectral moments method could provide, with some variations, the total DOS with
good accuracy. The detailed computing aspect of the method has been published elsewhere
(Benoit et al 1992).

Figure 2. The DOSg(ω) versusω, on a log–log scale, for the three 3D DLCA samples a, b
and c: ——�——, c = 0.050; ——N——, c = 0.075; ——•——, c = 0.150.

In figure 2, we have plotted, on a log–log scale, the DOS,g(ω), versusω for the three
samples (a, b and c). The full line is a linear fit of the DOS, and its slope is close to
0.28 ± 0.03, i.e., d̃ = 1.28 ± 0.03 which is a little less than the conjectured 4/3 spectral
dimension of percolating clusters. We observe that theω0.28-law holds even in the low-
frequency region, because the lower cut-off frequency is determined from a finite size of
aggregates. For the present case, one can estimate this cut-off to be less than 10−3. At
lower concentrations(c < 0.2), the aggregates have a fractal structure on a longer-range
scale. For high concentrations, a fractal structure could be expected on a short-range scale.
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4.2. Dynamic structure factors

For all of the samples, the spectral moments computations for the quantityS̄(q, ω) =
S(q, ω)/q2 were made for 100 different wave-vector moduliπ/100 6 q 6 π . Then the
functions were calculated in each case for 200 different frequenciesωmax/200 6 ω 6
ωmax ≈ 2.8.

Figure 3. The reduced dynamic structure factorS̄(q, ω) = S(q, ω)/q2 versusω, on a log–log
scale, for the three 3D DLCA samples a, b and c for six fixed values of the wave-vector modulus
q: (1) q = 0.083; (2)q = 0.208; (3)q = 0.521; (4)q = 0.906; (5)q = 1.575; (6)q = 2.736,
and: ——�——, c = 0.050; ——N——, c = 0.075; ——•——, c = 0.150.

In figure 3, we have plotted, for severalq-values ((1)q = 0.083, (2) q = 0.208;
(3) q = 0.521; (4) q = 0.906; (5) q = 1.575; (6) q = 2.736), the reduced dynamic
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structure factorS̄(q, ω) versusω, on a log–log scale, for samples a, b and c. For each
q-value, all curves exhibit the same form. As soon asq increases, a regime with a positive
slope appears in the low-frequency region to the detriment of the decreasing high-frequency
regime. One can distinguish two regions:ω � ω0 andω � ω0, whereω0 is the frequency
at which S(q, ω) has a maximum value for each fixed wave-vectorq. As qλ(ω0) = 1,
the case whereω � ω0 (ω � ω0) corresponds to theqλ � 1 (qλ � 1) limit. At low
q-values, the dynamic structure factorS(q, ω) is mostly dominated by a decreasing linear
regime(ω � ω0), whereas at substantially largerq, the linear increasing regime is dominant
(ω � ω0).

Figure 4. The global reduced dynamic structure factorS̄(ω) = ∑
q S̄(q, ω) versusω, on a

log–log scale, for the three 3D DLCA samples a, b and c, in theqλ � 1 limit: ——�——,
c = 0.050; ——N——, c = 0.075; ——•——, c = 0.150.

Let us consider the asymptotic behaviour of the dynamic structure factor in theqλ � 1
limit. As shown in figure 4, we have plotted, on a log–log scale, the frequency dependence
of a global dynamic structure factor̄S(ω) = ∑

q S̄(q, ω). The curves were obtained by
summing over 25 different low values ofq (π/100 < q < π/8). This result shows that
the asymptotic behaviour of̄S(ω) can be expressed asS̄(ω) ∼ ω−2.30±0.03 in the frequency
regime ω � ω0. In contrast, as shown in figure 5(log(S̄(ω)) versus log(ω)), the limit
ω � ω0 (qλ � 1) can be characterized by the power lawS̄(ω) ∼ ω0.40±0.04. Note also
that these results are obtained by summing over 25 values ofq (π/2 < q < π). For the
three samples a, b and c, the dynamic structure factor complies with the same scaling law
according to the statistical errors.

Now, as regards the wave-vector dependence ofS(q, ω) given in figure 6, we have
reportedS(q, ω) versusq for four fixed frequencies:ω = 0.356, 0.557, 0.879 and 1.103,
for the heaviest sample, c. The four curves are similar in appearance, with two parts
corresponding to two differentq-scalings. In order to check theq-index scalings ofS(q, ω),
we determined, for each frequencyω, the wave-vector modulusq0 for which S̄(q, ω) has
the maximum value. The values ofS̄(q, ω) are then rescaled bȳS(q0, ω) and averaged over
ω to give the function

S̄(q) = S(q)/q2 = 1

n

n∑
ω=1

(S̄(q, ω)/S̄(q0, ω)).
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Figure 5. The global reduced dynamic structure factorS̄(ω) = ∑
q S̄(q, ω) versusω, on a

log–log scale, for the three 3D DLCA samples a, b and c, in theqλ � 1 limit: ——�——,
c = 0.050; ——N——, c = 0.075; ——•——, c = 0.150.

Figure 6. The dynamic structure factorS(q, ω) versusq, for the heaviest 3D DLCA sample
(c = 0.15) for four values of frequencyω: ——◦——, ω = 0.356; ——�——, ω = 0.557;
——�——, ω = 0.879; ——M——, ω = 1.103.

We have represented in figure 7, on a log–log scale, the dependence of the functionS̄(q)

versusq/q0 for the three samples a, b and c. In fact these curves are obtained by averaging
overn = 50 values ofω-frequencies(ωmax/8 < ω < ωmax/2). The results demonstrate that
the wave-vector dependence complies with the power lawS(q) ' q3.90±0.10 for q below q0

andS(q) ' q0.21±0.04 for q aboveq0.
To test the accuracy of our computed results, we plotted, on a log–log scale, the scaling

functionH(qλ(ω)) = q−yS(q, ω) versusqλ(ω) for the three samples (figure 8). The curves
are obtained by averaging over 50 values of the wave-vector modulusq. According to the
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Figure 7. The average reduced dynamic structure factor

S̄(q) = S(q)/q2 = 1

n

n∑
ω=1

(S̄(q, ω)/S̄(q0, ω))

(whereS̄(q, ω) = S(q, ω)/q2) versusq/q0, on a log–log scale, for the three 3D DLCA samples
a, b and c: ——�——, c = 0.050; ——N——, c = 0.075; ——•——, c = 0.150.

Figure 8. The scaling function(q−yS(q, ω)) versusqλ(ω), on a log–log scale, for the three
3D DLCA samples a, b and c. Bars represent statistical errors, and: ——�——, c = 0.050;
——N——, c = 0.075; ——•——, c = 0.150.

results above, we find the scaling law(x = qλ(ω)):

H(x) ∼
{

x3.1±0.1 x � 1

x−0.6±0.1 x � 1.
(15)

Finally, the length scale is plotted versus the frequency, on a log–log scale, in figure 9,
for the three samples a, b and c. As indicated by the full line, we observe that the scaling
length complies with the power law:λ(ω) ∼ ω−0.72±0.03. From the dispersion relation



A cluster–cluster aggregation model 5565

Figure 9. The values of the wavelengthλ(ω) plotted as a function of frequencyω, on a log–log
scale, for the three 3D DLCA samples a, b and c:�, c = 0.050; N, c = 0.075;•, c = 0.150.

λ(ω) ∼ ω−d̃/D, using the spectral dimension valued̃ = 1.28± 0.03, one deduces that the
fractal dimension of our systems isD = 1.78± 0.10. This in very close agreement with
the fractal dimensionD = 1.78 of the 3D DLCA model.

5. Discussion and conclusion

In summary, in theqλ � 1 limit, the results show that the dynamic structure factor complies
with the power lawS(q, ω) ∼ qγ ω−α with γ = 3.90 ± 0.10 and α = 2.30 ± 0.03.
The γ -value is in complete agreement with theory (equation (13)). Using the value
d̃/D = 0.72 ± 0.03, one can deduce that the exponentτ defined in equation (11) is
τ = 3.20 ± 0.05 (τ = αD/d̃), which is close to the value 3.1 ± 0.1 deduced from the
scaling function in figure 8. From equation (13), one obtainsσ = 1.09± 0.06. This value
is in agreement with the notion thatσ � 1 (Alexanderet al 1993).

In theqλ � 1 limit, we have the scaling formS(q, ω) ' qδωβ with δ = 0.21±0.04 and
β = 0.40±0.04. These values differ slightly from the theoretical values ofδ1 = 0.40±0.20
andβ1 = 0.28± 0.03 (and differ strongly from the other theoretical valuesδ2 = −1.8± 0.1
and β2 = 1.9 ± 0.2) (equation (14)). We also note the coherence of our exponent
calculations with respect to theq-dependence and frequency dependence of the dynamic
structure factor. For example,τ ′(β) = βD/d̃ = 0.57 ± 0.08 is in close agreement with
τ ′(δ) = y − δ = 0.60± 0.15 as well as with the value 0.6 ± 0.1 deduced from the scaling
function H (equation (15)).

Note, as mentioned by Alexanderet al (1993), that equation (14) can be written in
terms of the supplementary indicesz1 andz2 as

S(q, ω) ∼ Aqδ1+z1ωβ1−z1d̃/D + Bqδ2+z2ωβ2−z2d̃/D. (16)

If we suppose that in this limit(qλ � 1), the dynamic structure factor is controlled by
the exponentτ ′

1(theo) = 0.40 ± 0.04, i.e. separate motion of blobs, by comparison with
the computed values ofδ and β, we find z1(δ) = −0.21 from the q-dependence and
z1(β) = −0.17 from the frequency dependence. If we assume that the second contribution
resulting from the internal strain of the blob is dominant, one obtainsz2(δ) = 1.99 from the
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q-dependence andz2(β) = 2.03 from the frequency dependence. We note the agreement of
the computed exponentsz1 andz2 obtained from theq- andω-dependences respectively.

Figure 10. Experimental and theoretical (full line) dynamic structure factors for different
frequencies, for a basic aerogel of density 250 kg m−3 (after Reichenaueret al 1989): •,
0.09 THz;N, 0.70 THz;◦, 0.260 THz;�, 1.070 THz;M, 0.45 THz.

Vibration excitations in base-catalysed silica aerogels of different densities have been
investigated by inelastic neutron scattering. The fractal dimension of these systems is about
D = 1.8. In figure 10, we reproduce, from Reichenaueret al (1989), the experimental
and theoretical (linear curve) inelastic intensity versus momentum transferQ for a base-
catalysed silica aerogel of density 250 kg m−3 at different frequencies: (1) 0.09 THz, (2)
0.26 THz, (3) 0.45 THz, (4) 0.70 THz and (5) 1.07 THz. Their theoretical curve was
obtained by a phenomenological approach.

Comparison of our result on the dynamic structure factor with the experimental
measurement of Reichenauer shows a qualitative similarity between the curves in figure
6, which represent the functionsS(q, ω) versus the wave-vector magnitudeq with respect
to our samples c, and the curves in figure 10 for a basic aerogel of density 250 kg m−3. The
concentrationc = 0.15 of our sample corresponds to the aerogel densityρ = 172 kg m−3.

We mentioned the good agreement of the fractal dimension valueD = 1.78± 0.1 for
the diffusion-limited cluster–cluster aggregation model andD = 1.8 for basic aerogels.
The spectral dimension of these latter has been estimated from Raman scattering to be
d̃ = 1.21–1.31 (Boukenteret al 1987, Champagnonet al 1987) for a sample of density
0.09 g cm−3. This also seems to be fully in line with our calculated values. However, from
Brillouin scattering, the estimated spectral dimension of the base-catalysed silica aerogels
is d̃ = 1.1 ± 0.1 (Vacheret al 1990, Anglaretet al 1994). This value has been related to
tensorial elasticity. Calculations with bond-bending force models are in progress, to take
into account the tensorial nature of the vibrations in realistic systems, i.e. basic aerogels.
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